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Widespread mRNA 3′​ UTR shortening through alternative 
polyadenylation1 promotes tumor growth in vivo2. A prevail-
ing hypothesis is that it induces proto-oncogene expression 
in cis through escaping microRNA-mediated repression. 
Here we report a surprising enrichment of 3′​UTR shortening 
among transcripts that are predicted to act as competing-
endogenous RNAs (ceRNAs) for tumor-suppressor genes. 
Our model-based analysis of the trans effect of 3′​ UTR 
shortening (MAT3UTR) reveals a significant role in altering 
ceRNA expression. MAT3UTR predicts many trans-targets 
of 3′​ UTR shortening, including PTEN, a crucial tumor-sup-
pressor gene3 involved in ceRNA crosstalk4 with nine 3′​UTR-
shortening genes, including EPS15 and NFIA. Knockdown of 
NUDT21, a master 3′​ UTR-shortening regulator2, represses 
tumor-suppressor genes such as PHF6 and LARP1 in trans in a 
miRNA-dependent manner. Together, the results of our anal-
ysis suggest a major role of 3′​ UTR shortening in repressing 
tumor-suppressor genes in trans by disrupting ceRNA cross-
talk, rather than inducing proto-oncogenes in cis.

Widespread 3′​ UTR shortening (3′​US) through alternative 
polyadenylation (APA) occurs during enhanced cellular prolifera-
tion and transformation1,5–8. Recently, we reported that NUDT21-
mediated 3′​US promotes glioblastoma growth, further underscoring 
its significance to tumorigenesis2. A prevailing hypothesis is that 
a shortened 3′​ UTR results in activation of proto-oncogenes in 
cis through escaping microRNA (miRNA)-mediated repression. 
Indeed, several well-characterized oncogenes, such as CCND1, have 
been shown to use 3′US to increase their protein levels, but mostly 
in cell lines5. However, in recent PolyA sequencing7 and our TCGA 
RNA sequencing (RNA-Seq) APA analysis1 (5 and 358 tumor/nor-
mal pairs, respectively), most oncogenes with 3′​US previously iden-
tified in vitro5 displayed almost no changes in their 3′​UTR lengths in 
tumors (Fig. 1a). For example, we identified 1,346 recurrent (occur-
rence rate >​20%) 3′US genes in 358 tumor/normal pairs1. However, 
CCND1 is not on that list as its 3′​US occurred in only a very small 
portion (8 out of 358; 2.2%) of tumors (Fig. 1b). Furthermore, simi-
lar to random genes, 3′​US genes from all 5 previous APA studies 
have little overlap with the top 500 (P <​ 0.01) high-confidence onco-
genes as defined on the basis of distinct somatic mutational patterns 
of >​8,200 tumor/normal pairs9 (Fig. 1c). These results challenge 

the previous hypothesis and suggest a different function of 3′​US 
for tumorigenesis.

Aside from regulating its cognate transcript in cis, the 3′​UTR 
has also been implicated in competing-endogenous RNA (ceRNA) 
regulation in trans10. Although the scope is not fully understood, 
ceRNA is generally thought to form global regulatory networks 
(ceRNETs) controlling important biological processes11. For exam-
ple, the tumor suppressor PTEN’s ceRNAs, CNOT6L and VAPA, 
have been shown to regulate PTEN and phenocopy its tumor-sup-
pressive properties12. As the ceRNA’s regulatory axis is mostly based 
on miRNA-binding sites on 3′​ UTRs, we hypothesize that when 
genes with shortened 3′​ UTRs no longer sequester miRNAs, the 
released miRNAs would then be directed to repress their ceRNA 
partners, such as tumor-suppressor genes, in trans, thereby contrib-
uting to tumorigenesis.

To test this hypothesis, we first used well-established strategies 
to reconstruct two ceRNETs from 97 TCGA breast tumors and their 
matched normal tissues, respectively, based on miRNA-binding-
site overlap and co-expression13,14 between genes of active ceRNA 
regulation (Methods). In general, transcripts are less correlated 
between each other in tumors than in normal tissues, partially due 
to tumor heterogeneity15 and global reduction of miRNA expression 
in tumors16 (Fig. 2a). As expected, the loss of co-expression results 
in a much smaller (tenfold reduced) ceRNET for tumors than for 
normal tissues (Fig. 2b).

To investigate the role of 3′​US in ceRNET disruption, we focused 
on estrogen-receptor-positive (ER+) breast tumors, which comprise 
the majority (68/97) of TCGA breast tumor samples. We built nor-
mal and tumor ceRNETs using the same procedure as above. Using 
the DaPars algorithm1, we identified 427 3′​US genes recurring in 
>​20% of tumors. Close inspection indicates that 3′​US is associ-
ated with ceRNET disruption. For example, we identified PTEN 
and EPS15 as a ceRNA pair in normal ceRNET (4 miRNA-bind-
ing-site overlap and ρ =​ 0.63 co-expression). However, since EPS15 
underwent 3′​US in 23 (33.8%) out of 68 tumors, thereby losing 
its capability to compete with PTEN for miRNAs, it lost (ρ =​ 0.32) 
the co-expression (and ceRNA) relationship with PTEN in tumors 
(Fig. 2c). Globally, the top 100 ceRNAs with the most significant 
3′​US genes all lost their interactions in tumors, while 12 out of 
100 ceRNAs lacking 3′​US retained (P =​ 0.0002) their interactions. 
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Furthermore, in separate ceRNETs from 30 tumor/normal pairs 
with the least and most amount of 3′​US (upper panel in Fig. 2d), 
more 3′​US is clearly associated with more ceRNET loss (38.6 versus 
16.4 in fold decrease, P <​ 1 ×​ 10−16, lower panel in Fig. 2d). From 
these findings, we conclude that 3′​US is strongly associated with 
ceRNA network disruption in tumors.

To understand the function of 3′​US-mediated ceRNET disrup-
tion, we selected 381 3′​US genes and 2,131 of their ceRNA partner 
genes (3′​US ceRNAs), including 591 3′​US ceRNA hub and 1,540  
3′​US ceRNA non-hub genes, in the normal ceRNET (Supplementary 
Table 1, Methods). We hypothesized that 3′​US genes released their 
miRNAs to repress their ceRNA partners in trans. Consistent with 
our hypothesis, expression changes of 2,131 3′​US ceRNA genes in 
tumors are anti-correlated (r =​ −​0.21; P =​ 5 ×​ 10−24) with the degree 
of 3′​US of the associated 3′US genes (Supplementary Fig. 1a). 
As a result, among 976 genes in normal ceRNET downregulated 
in tumors, 816 (83.6%) are ceRNAs of 3′​US genes. Surprisingly,  
3′​US ceRNA hub genes are enriched in tumor-suppressor genes 
(P ~ 1 ×​ 10−20) but not in oncogenes (Fig. 3a), suggesting that the 
3′​US represses tumor suppressors in trans. For example, 3′​US of 
EPS15 would contribute to downregulating its ceRNA partner PTEN 
in tumors (Fig. 2c). Globally, 160 expressed tumor-suppressor genes 
from 3′US ceRNAs are more likely downregulated than 226 control 
tumor-suppressor genes not in ceRNET (P =​ 8 ×​ 10−3, Fig. 3b), indi-
cating a significant association between 3′​US and tumor-suppressor 
gene repression.

Additional analyses on sequence features partially explain why 
3′​US genes, but not tumor suppressors in their ceRNA partners, 

are likely to have alternative proximal polyadenylation sites, lead-
ing to 3′​US (Supplementary Note). We have also analyzed TCGA 
450K methylation array data and found that the 3′​US-mediated 
ceRNA repression is independent of promoter hypermethylation 
(Supplementary Note).

To better quantify the trans effects of 3′​US, we developed a 
mathematical model (MAT3UTR) based on its 3′US gene(s) 
expression, 3′​US level, miRNA-binding site(s) and miRNA 
expression(s) (Methods). In 1,548 differentially expressed 3′​US 
ceRNAs, MAT3UTR can explain 47.6% of variation in gene expres-
sion (Supplementary Fig. 3c). In contrast, the MAT3UTR-control 
model, which considers miRNA expression but not 3′​US, explains 
only 27.2% of variation (Supplementary Fig. 3d), consistent with 
previous reports17 that miRNA alone has a weak role in regulating 
gene expression. The results suggest that the trans effects of 3′​US 
plays a major role in regulating ceRNA gene expression.

MAT3UTR predicts many trans-target genes of 3′​US, includ-
ing PTEN, in ceRNA crosstalk11–13 (top 1% MAT3UTR score, 
Supplementary Table 2). In normal ceRNET, PTEN is predicted to 
be a ceRNA of nine 3′​US genes (Fig. 3c). When we ranked 97 breast 
tumor/normal pairs by the amount of 3′​US across these nine genes 
(upper panel in Fig. 3d), tumors with more 3′​US showed more down-
regulation of PTEN (P =​ 0.03, lower panel in Fig. 3d). Furthermore, 
MAT3UTR can explain 86.9% of the variation in PTEN’s expression 
across tumors (Supplementary Fig. 3g), suggesting that the trans 
effects of 3′​US play a major role in downregulating PTEN.

To empirically test the hypothesis that 3′US can downregulate 
PTEN in trans, we focused on EPS15 among the nine 3′​US genes 
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Fig. 1 | 3′US genes are not strongly associated with oncogenes. a, TCGA RNA-Seq data for CCND1 demonstrates no change in 3′​UTR usage between 
tumors (yellow) and matched normal samples (blue). A similar pattern was also observed in PolyA-seq7 of CCND1. b, Δ​PDUI values for 3′​US genes (red) 
and all genes (gray) in 358 TCGA tumor/normal pairs1 (upper panel). A negative Δ​PDUI represents 3′​UTR shortening. The lower panel shows Δ​PDUI 
values for CCND1 across 358 tumor/normal pairs1. Significant CCND1 3′​ UTR shortening occurred only in a very small portion (8 out of 358; 2.2%) of 
tumors. c, Overlap P values and the ratios between previously identified 3′​US genes and oncogenes. ‘Random (n =​ 100)’ represents the averaged P value 
from 100 random sampling of 100 RefSeq genes. The error bar represents standard variation values of P values from 100 random trials.
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(Methods). We observed that depletion of EPS15 by siRNA in MCF7 
cells reduces PTEN expression (Fig. 3e). To ascertain whether this 
effect depends on miRNA-based targeting of the PTEN 3′​ UTR, we 
used a luciferase reporter vector with the PTEN 3′​ UTR (pLight-
Switch-PTEN 3′​ UTR) to test the effect of EPS15 knockdown on 
its expression. We observed that reduction of EPS15 reduces PTEN 
3′​ UTR luciferase activity (Fig. 3f). To further understand whether 
the crosstalk is miRNA-dependent, we depleted DICER1 to abol-
ish miRNA biogenesis and found that loss of DICER1 can relieve 
the influence of EPS15 knockdown on PTEN 3′​ UTR expression  
(Fig. 3g). Finally, overexpression of the EPS15 3′​ UTR increased the 
number of PTEN-positive cells (Fig. 3h,i). Thus, EPS15 3′​US may 
impact PTEN expression.

To gain insights into the global cause-and-effect relationship 
between 3′​US and the repression of tumor-suppressor genes, we 
revisited our previous data from NUDT21-knockdown HeLa cells, 
since NUDT21 is one of the master regulators of 3′​US 2. We identi-
fied 1,168 3′​US ceRNAs in NUDT21-knockdown cells solely on 
the basis of significant miRNA-binding-site overlap with 1,450  

3′​US genes, since co-expression cannot be effectively estimated 
from two replicates of our experiments. With 9,914 expressed 
RefSeq genes with no significant miRNA-binding-site overlap 
with 3′​US genes as random controls, the tumor-suppressor genes 
remain strongly enriched in 3′​US ceRNAs (P ~ 1 ×​ 10−38, Fig. 4a). 
Among 57 tumor-suppressor genes in 3′​US ceRNAs, 33 (57.9%) 
showed repression in NUDT21-knockdown samples; whereas a 
smaller portion (44.5%) of 339 control tumor-suppressor genes 
showed repression (P ~ 0.03, Fig. 4b), suggesting that NUDT21-
mediated 3′​US represses tumor-suppressor genes in trans. In spite 
of potentially higher false positives due to lack of co-expression in 
ceRNA identification, these results are highly consistent with our 
observations in TCGA breast cancer. On the basis of these results, 
we posit that repression of tumor-suppressor ceRNAs would cor-
relate with increased occupancy of AGO2 in the RISC complex. 
To formally test this hypothesis, we isolated cytoplasmic fractions 
from control or NUDT21-knockdown cells and conducted RNA 
immunoprecipitation (RIP) using anti-AGO2 antibodies. On 
average, we observed ~200-fold enrichment of ceRNAs in Ago2 
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RIP complexes relative to control IgG (Supplementary Fig. 4b). 
Reduced expression of NUDT21 does not impact AGO2/DICER1 
expression and GAPDH messenger RNA binding to AGO2  
(Fig. 4c,d and Supplementary Fig. 4b). Furthermore, we sequenced 
miRNAs from control and NUDT21-knockdown cells, and found 
that miRNAs are equally likely to be upregulated or downregulated 
(Supplementary Fig. 4d), ruling out a general effect on miRNA 
biogenesis. Importantly, we could detect increased association 
of multiple tumor-suppressor ceRNAs with AGO2 following  

NUDT21 depletion that ranged from 1.5-fold to nearly 7-fold  
(Fig. 4d). These results demonstrate that 3′​US can lead to reduc-
tion of tumor-suppressor genes through their increased associa-
tion with repressive AGO2 complexes.

To further validate the miRNA-dependent, repressive trans 
effects of 3′​US, we monitored expression of the tumor-suppres-
sor genes PHF6 and LARP1 and their ceRNA partners, YOD1  
and LAMC1 (Supplementary Table 3). We consistently observed 
that PHF6 and LARP1 expression levels were decreased in 
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NUDT21-knockdown cells while both YOD1 and LAMC1 expres-
sion levels were increased (Fig. 5a). To determine whether the 
3′​ UTR mediated this effect, we transfected luciferase reporters 
containing the 3′​ UTR of either PHF6 or LARP1 into control or 
NUDT21-knockdown cells and measured luciferase activity. We 
found that both reporters were downregulated after NUDT21 
knockdown (Fig. 5b). Both PHF6 and LARP1 have been shown 
as tumor-suppressor genes9,18,19 and downregulation of PHF6 or 
LARP1 in HeLa cells increases cell growth, confirming their tumor 
suppressive activity (Supplementary Fig. 5).

To further investigate the mechanism of tumor-suppressor 
ceRNA downregulation, we chose PHF6 on the basis of MAT3UTR 
analysis and experimental results (Methods). We selected two miR-
NAs targeting PHF6 (Fig. 5c), which were released by 3′US of YOD1 
(miR-3187-3p as the highest and miR-549 as the sixth highest in 
terms of βmiRjin equation (3); Methods and Supplementary Table 4). 
Neither of these miRNAs was found to change its expression follow-
ing NUDT21 knockdown (Supplementary Fig. 4d). However, PHF6 
expression was partially rescued by an antagomir blocking the 
activity of miR-549 and completely rescued by an antagomir target-
ing miR-3187-3p (Fig. 5d). Moreover, PHF6 3′​ UTR-mediated lucif-
erase activity was partially rescued by the miR-3187-3p antagomir 

or YOD1 siRNA (Fig. 5e). To understand whether reduced expres-
sion of PHF6 depends on YOD1 levels, we transfected YOD1 
cDNA into cells depleted of YOD1 and found that re-expression of 
YOD1 could not restore either the expression of endogenous PHF6  
(Fig. 5f) or the expression of the PHF6 3′​ UTR-mediated lucif-
erase (Fig. 5g), suggesting that the trans effect on PHF6 is due to 
the 3′​ UTR of YOD1. Finally, to determine whether the crosstalk 
between PHF6 and YOD1 is miRNA-dependent, we also showed 
that depletion of DICER1 abolishes PHF6 and YOD1 crosstalk  
(Fig. 5h). Collectively, the data strongly suggest that NUDT21-
mediated 3′​US causes tumor-suppressor gene repression in trans in 
a miRNA-dependent manner.

Although analyzing ceRNA crosstalk in light of 3′​US has been 
briefly suggested20–22, our MAT3UTR analysis of 97 breast cancer 
RNA-Seq data followed by functional validation suggests a wide-
spread causal role of 3′US in repressing tumor-suppressor genes 
in trans. While the trans effect further emphasizes the impor-
tance of APA in tumor progression, it also provides an additional  
layer of gene regulation and underscores the need for further 
investigation into other potential mechanisms23,24 that could per-
turb ceRNA crosstalk, such as RNA editing and competition with  
RNA-binding proteins.
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Methods
Tumor-suppressor genes and oncogenes. The tumor-suppressor genes and 
oncogenes used in this study were defined by the TUSON algorithm from genome 
sequencing of >​8,200 tumor/normal pairs9, namely residue-specific activating 
mutations for oncogenes and discrete inactivating mutations for tumor-suppressor 
genes. TUSON is a computational method that analyzes patterns of mutation in 
tumors and predicts the likelihood that any individual gene functions as a tumor-
suppressor gene or oncogene. We ranked genes by their TUSON prediction  
P values from the most to the least significant and used the top 500 genes (P <​ 0.01) 
as the reference tumor-suppressor genes or oncogenes. After removing 30 genes 
in common, 470 tumor-suppressor genes and oncogenes were used for the 
enrichment analysis. Note that there were very few breast tumor-specific tumor-
suppressor genes and oncogenes (36 and 3 with breast q-value ≤​ 0.5, respectively) 
and 90% of them were found in the top 500 pan-cancer predictions.

Previously identified 3′US genes in cancers. Xia et al. identified 1,187 3′​US genes 
across 7 TCGA cancer types1. Mayr and Bartel selected 23 3′​US genes from 27 
cancer cell lines5. Fu et al. identified 428 3′​US genes in human breast cancer cell 
lines6. Lin et al. reported 120 3′​US genes in major cancers and tumor cell lines7. 
Morris et al. found 286 3′​US genes in human colorectal tumor samples8. The 3′​US 
genes of Xia et al. were randomly sampled to 100 genes for a fair comparison.

Selection of miRNA-binding sites. Predicted miRNA-binding sites were obtained 
from TargetScanHuman version 6.225. Only those with a preferentially conserved 
targeting score (Pct) more than 0 were used1. Experimentally validated miRNA-
binding sites were obtained from TarBase version 5.026, miRecords version 427 
and miRTarBase version 4.528. The binding sites found in indirect studies such as 
microarray experiments and high-throughput proteomics measurements were 
filtered out29. Another source is the microRNA target atlas composed of public 
AGO-CLIP data30 with significant binding sites (q-value <​0.05). The predicted and 
validated binding site information was then combined to use in this study.

TCGA breast tumor RNA-Seq and miRNA-Seq data. Quantified gene  
expression files (RNASeqV1) for primary breast tumors (TCGA sample code 
01) and their matching solid normal samples (TCGA sample code 11) were 
downloaded from the TCGA Data Portal31. We used 97 breast tumor samples  
that have matched normal tissues. A total of 10,868 expressed RefSeq genes 
(fragments per kilobase of transcript per million mapped reads (FPKM) ≥​ 1 in  
>​80% of all samples) were selected for downstream analyses. To better quantify 
gene expression in the presence of 3′US, we used only coding regions (CDS) to 
quantify mRNA expression. Exon and CDS annotation for TCGA data and  
miRNA expressions (syn1445790) were downloaded from Sage Bionetworks’ 
Synapse database.

CeRNA identification in TCGA breast tumors. CeRNAs were identified by 
miRNA-binding-site overlap and expression correlation13,14. Only microRNAs with 
intermediate expression (between 0.01 and 100 in averaged fragments per million 
mapped fragments (FPM)) were used to capture dynamic interactions14. After 
removing genes with fewer than six such miRNA-binding sites, gene pairs with 
significant miRNA-binding-site overlap (<​0.05 in Benjamini–Hochberg-corrected 
P value) were selected. Among them, pairs correlated (>​0.6 in Pearson’s correlation 
coefficient) (P <​ 1 ×​ 10−10) in gene expression were defined as ceRNAs. To 
account for mRNAs with variable 3′​ UTRs, we used only CDS to quantify mRNA 
expression. Genes that are connected with >​500 ceRNAs were defined  
as hub genes.

Model-based analysis of trans effect of 3′US (MAT3UTR). Suppose transcript 
x has a constitutive proximal 3′​ UTR (pUTR) and a distal 3′​ UTR that might be 
shortened in tumors (dUTR) (Supplementary Fig. 3a). We define xMiRs( , miR )j  as 
the amount of binding sites for miRNA miR j in x.

= +

× ×

x x x

x x

MiRs( , miR ) (pUTR( , miR ) dUTR( , miR )

PDUI( )) FPKM( )
(1)j j j

where xpUTR( , miR )j  and xdUTR( , miR )j  are the numbers of miRj binding sites 
in pUTR and dUTR of x, and FPKM x( )  is expression of x. PDUI indicates the 
percentage of dUTR usage index1. Note that equation (1) can also estimate for 
genes with no distal 3′​ UTR by setting = .PDUI 1

To estimate the trans effect of 3′​US on gene y′​, we define X to be a set of 3′​US 
genes that are ceRNA partners of y′​ (Supplementary Fig. 3b) and Y to be a set of 
ceRNA partners to ∈x X , including y′​. Only moderately expressed miRNAs are 
considered, since they are likely to bind all possible binding sites. Thus, we can 
roughly use the amount of miRNA-binding sites to represent the miRNA function. 
The miR j-binding effect on each copy of y′​ can be defined as follows:

∑ ∑
′ =

+
∈ ∈

y
x y

TransE( , miR )
FPM(miR )

MiRs( , miR ) MiRs( , miR ) (2)j
j

x X j y Y j

where FPM(miR )j  is the miR j expression level. Since miRNA can bind to any 
binding sites in the genes connected by the ceRNA relationship ( ∪X Y ), both  
X and Y need to be considered.

The high-dimensional MAT3UTR input data are often highly correlated with 
each other (for example, 588 miRNAs in equation (2)). Therefore, MAT3UTR 
employs the ridge regression that is known to address the dimensionality and 
collinearity32,33 in biological data. Indeed, the ridge regression yields a remarkably 
higher prediction power than classical linear regression. For example, MAT3UTR 
has a much smaller mean square error (0.38) than classical linear regression (mean 
square error =​ 10.84) (Supplementary Fig. 3f).
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subject to β∑ ≤′ ′∈ tymiR 3 UTR( ) miRj j , the ridge regression penalty. ′MAT UTR y3 ( )  is 
the trans effect of 3′​US; βmiRj

 is the regression coefficient of miR j; ϵ ′y  is the gene-
specific error term. We use R2 to show how much variation in gene expression can 
be explained by the MAT UTR3  model. We also used 10-fold cross-validation (CV) 
to choose the optimal regularization parameter t with 75% of data for training and 
the remaining 25% for testing. CV error is measured by mean-squared error. Then, 
to estimate β, we fit the ridge regression with the entire data set using the selected 
regularization parameter as chosen by CV.

As a result, y′​ would be more repressed following 3′​US, if: y′​ contains more 
miRNA-binding sites in its 3′​ UTR; X and Y contain fewer miRNA-binding sites; 
and more transcripts in X undergo 3′​US. The MAT3UTR-control model, which 
considers miRNA expression but not 3′US, is defined as:

∑ β- ′ = × + ϵ
′ ′

′
∈

yMAT3UTR control( ) log
FPM(miR )

FPM(miR ) (4)
y

j

j
y

miR 3 UTR( )
miR
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j

where FPM(miR )j  is the miR j expression level. For model comparison between 
MAT3UTR and MAT3UTR-control, we randomly selected 75% of data for training 
and the remaining 25% for testing. We perform random division 100 times to evaluate 
the performance of the MAT3UTR and MAT3UTR-control models, where 10-fold 
CV also confirms that MAT3UTR has a 2-fold higher prediction power on gene 
expression variation than the MAT3UTR-control model (Supplementary Fig. 3e).

Selecting genes for experimental validations. To test the trans repressive effect 
of 3′US on PTEN, we chose EPS15 on three grounds. First, its expression is easily 
detected in MCF-7 cells; second, analysis of RNA-Seq from MCF-7 cells34 indicates 
distal polyA site usage of the EPS15 transcript; third, the EPS15 3′​ UTR contains 
four microRNA target sites that compete with the PTEN 3′​ UTR.

To investigate the tumor-suppressor ceRNA downregulation mechanism, we 
chose PHF6, because among 57 tumor-suppressor genes in 3′​US ceRNAs, PHF6 
was predicted as a strong (sixth highest in MAT3UTR score, Supplementary  
Table 3) trans-target of 3′​US, was significantly downregulated (second highest in 
gene expression) and was the most enriched in AGO2 RIP complexes of the ceRNA 
tested (Fig. 4d).

Statistical analyses. Differential expression analyses were carried out by edgeR 
(version 3.8.6)35 (tumor samples versus normal samples) with false discovery rate 
(FDR) control at 0.05. The significance of observed values for a particular class 
compared to its control is calculated from one-tailed Pearson’s χ​2 test. Each variable 
follows either a binomial or multinomial distribution and each case consists of at 
least five counts, which meets the assumption of Pearson’s χ​2 test. To test whether 
there is a significant enrichment of tumor-suppressor genes or oncogenes among 
a gene list of our interest, we conducted hypergeometric tests with normalized 
overlap counts, since assessing overlap between sets meets all criteria to use 
hypergeometric tests, including trials without replacement. To compare means of 
two groups that have different variances, we used Welch’s t-test, which does not 
assume equal population variance. To check the normality assumption for the  
t-test, we conducted a Shapiro-Wilk normality test for small samples (n <​ 50).  
All statistical computations were performed in the Python scipy stats package 
(version 0.15.1) or R (version 3.1.1).

RNA-Seq for NUDT21 depletion experiment. We previously sequenced two 
control and two NUDT21 depletion samples of HeLa cells by HiSeq 2000  
(LC Sciences)2. After trimming adaptors using Trim Galore (version 0.4.1),  
paired-end RNA-Seq reads of 101 base pairs in each end were used to reconstruct 
the transcriptome in the Tuxedo protocol36 (TopHat 2.0.6 and Cufflinks 2.1.1). 
The resulting FPKM values were normalized for comparison using Cuffdiff 2.2.0. 
Further analyses are based on 10,681 expressed (FPKM ≥​ 1 in >​3 samples) RefSeq 
genes. We sequenced miRNAs from control and NUDT21-knockdown cells to 
utilize only miRNAs with intermediate expression in ceRNA identification.

CeRNA identification in the NUDT21-knockdown experiment in the HeLa cell 
line. Due to the small sample size (two for each condition wild-type and NUDT21 
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knockdown), ceRNAs were identified solely on the basis of miRNA-binding-
site overlap. We considered only binding sites for miRNAs with intermediate 
expression (between 0.01 and 100 in averaged FPM). A total of 1,450 3′US genes 
identified by DaPars had significant miRNA-binding-site overlap with 1,168 
ceRNA genes (3′US ceRNA partners).

MiRNA-Seq for the NUDT21 depletion experiment. HeLa cells were transfected 
with control or NUDT21 siRNA. NUDT21 depletion was validated as previously 
described2. Small RNA libraries were generated from one control and one 
NUDT21 depletion sample using the Illumina Truseq Small RNA Preparation kit, 
and sequenced on Illumina GAIIx. Raw sequencing reads (40 nucleotides) were 
obtained using Illumina’s Sequencing Control Studio software following image 
analysis and base-calling by Illumina’s Real-Time Analysis (v 1.8.70). Then a script 
ACGT101-miR v 4.2 (LC Sciences) was used for data analysis, where reads are 
mapped to the reference database (miRbase). The script also normalizes the counts 
by a library size parameter for comparison.

CeRNA tumor-suppressor repression in HeLa cells with NUDT21 knockdown. 
Parental HeLa cells were purchased from ATCC (cat. no. CCL-2) and maintained 
in Eagle’s minimum essential medium (Lonza, cat. no. 12-604F) with 10% fetal 
bovine serum. The cells were made mycoplasma free by incubating with Plasmocin 
(InvivoGen, cat. no. ant-MPT) for two weeks before transfection with three 
different siRNAs for NUDT21 (Sigma Aldrich, ID: SASI_Hs01_00146875~77) and 
negative control siRNA (Sigma Aldrich, ID:SIC002) using previously established 
approaches2. Western blotting was also performed as described in our previous 
work2 using antibodies raised against: PHF6 (Santa Cruz, cat. no. sc-271767), 
YOD1 (abcam, ab178979), NUDT21 (Proteintechlab, cat. no. 10322-1-AP) and 
GAPDH (Sigma, G9545). To block miRNA function, we selected two miRNAs with 
a strong trans effect targeting PHF6 (miR-3187-3p and miR-549) and HeLa cells 
were co-transfected with siRNA for NUDT21 and the two antagomirs, to block the 
two predicted miRNAs, miR-549 and miR-3187-3p in the PHF6 3′​ UTR. The two 
antagomirs were designed37 and synthesized from Sigma-Genosys: Antagomir-
3187-3p: 5′​-[mU]s[mU]s[mG]mG][mC][mC][mA][mU][mG][mG][mG][mG]
[mC][mU][mG] [mC][mG]s[mC]s[mG]s[mG]s-chol-3′​; and Antagomir-549:  
5′​-[mU]s[mG]s[mA][mC] [mA][mA][mC][mU][mA][mU][mG][mG][mA][mU]
[mG][mA][mG][mC]s[mU]s[mC]s[mU]s-chol-3′​. PHF6 and YOD1 expression 
were detected by western blotting and quantified by Image Lab software (version 
5.2.1) from Bio-Rad.

Detection of ceRNA tumor-suppressor gene enrichment by RIP with 
quantitative PCR. HeLa cells were seeded in a 6-well plate at 4 ×​ 105 cells per 
well and transfected with a Cas9 and single-guide RNA (sgRNA) plasmid 
targeting NUDT21 or with Cas9 and GFP as a control. sgRNAs for NUDT21 (top, 
ccggccgcccaatcgctcgcagac; bottom, aaacgtctgcgagcgattg ggcgg) were synthesized 
(Sigma), and the annealing double-stranded DNA was cloned into pGL3-U6-
sgRNA-PGK-puromycin. The transfected cells from three wells were combined 
and then selected with 10 µ​g ml−1 blasticidin for three days. NUDT21-knockdown 
efficiency was determined by western blot with NUDT21 antibody. RIP was 
performed with anti-AGO2 antibody, and AGO2-associated RNAs were purified 
and measured by quantitative real-time PCR38. Briefly, the cells were harvested and 
lysed with 100 µ​l polysome lysis buffer (100 mM KCl, 5 mM MgCl2, 10 mM Hepes 
pH 7.0, 0.5% NP50, 1 mM DTT and 1×​PI cocktail). The cell lysate was centrifuged 
at 10,000g for 15 min and added to magnetic beads (A+​G) with 5 µ​g anti-Ago2 
antibody or normal mouse IgG suspended in 900 µ​l of NET2 buffer (50 mM Tris-
Cl pH 7.4, 150 mM NaCl, 1 mM MgCl2, 0.05% NP-40, 17.5 mM EDTA pH 8.0, 
1 mM DTT and 100 units ml−1 RNaseOUT). The beads were washed six times with 
NT2 buffer (50 mM Tris-Cl pH 7.4, 150 mM NaCl, 1 mM MgCl2, 0.05% NP-40). 
Beads were resuspended in 150 µ​l proteinase K buffer (50 mM Tris-Cl pH 7.4, 
150 mM NaCl, 1 mM MgCl2, 0.05% NP-40 and 1% SDS) with 9 µ​l proteinase K. 
Samples were incubated at 55 °C for 30 min and isolate total RNAs with 150 µ​
l phenol–chloroform. The total RNA was reverse transcribed and the candidate 
ceRNAs were determined by quantitative real-time PCR using primers described in 
Supplementary Table 5 (Bio-Rad real-time PCR system).

LightSwitch luciferase reporter assay with PTEN, PHF6 and LARP1 3′ UTR. 
LightSwitch luciferase reporter constructs with PTEN, PHF6 and LARP1 3′​ UTR 
were purchased from SWITCHGEAR genomics. Briefly, HeLa cells were seeded 
in a 96-well white TC plate in 100 µ​l total volume to yield ≥​80% confluence at the 
time of transfection. For each transfection, the following reagents were combined: 
50 nM siRNA and/or miRNAs and/or antagomir RNA, individual GoClone 
reporter (30 ng µ​l−1) 3.33 µ​l and 1 ng Rluc reporter. Lipofectamine 2000 was diluted 
in OPTI-MEM medium at 1:10 and incubated at room temperature for 5 min and 
then added to each tube. Following a 20-min incubation at room temperature,  

80 µ​l of pre-warmed (37 °C) OPTI-MEM medium per replicate was added for a 
total of 100 µ​l per replicate transfection. All 100 µ​l of the transfection mixture was 
added to each well and incubated overnight. The luciferase reporter assays were 
performed according to the manufacturer’s protocol (Invitrogen).

Immunofluorescence staining for PTEN in MCF7 cells with EPS 3′ UTR. 
pLightSwitch-EPS15 3′​ UTR construct was purchased from SWITCHGEAR 
genomics and transfected into MCF7 cells. PTEN expression was detected by 
immunofluorescence staining with anti-PTEN antibody from Cell Signaling. 
Briefly, 1 ×​ 105 MCF7 cells were seeded in 4-well chamber slides overnight, 
and transfected with pLightSwitch-EPS15 3′UTR/GFP constructs at 10:1 or 
pLightSwitch-3′​ UTR/GFP constructs as a control. One day after transfection,  
the cells were fixed with 90% cold methanol at −​20 °C overnight. The next day, 
0.5% Triton X-100 in PBS was added and incubated at room temperature for  
30 min. Samples were blocked in 3% BSA in PBS at room temperature for 1 h. 
PTEN antibody was used at 1:200 dilution in 3% BSA/PBS and 200 μ​l per well 
was added to the chamber slides and incubated for 1 h at room temperature. 
After washing three times, the cells were incubated with Alexa-594-conjugated 
secondary antibody in 3% BSA/PBS for 1 h at room temperature, in the dark.  
The cells were rinsed three times with PBS, with the third wash containing DAPI. 
The coverslips were mounted in anti-fade mounting medium and detected by 
immunofluorescence microscopy. Both PTEN- and GFP-positive cells were 
counted in EPS15 3′​ UTR/GFP cells and pLightSwitch-3′​ UTR/GFP control cells.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. The open source MAT3UTR program (version 0.9.2) is freely 
available at https://github.com/thejustpark/MAT3UTR with necessary example 
data for this analysis.

Data availability. Raw and processed miRNA-Seq data for the NUDT21-depletion 
experiment have been deposited to GEO under the accession number GSE78198.
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manuscript, all fields must be completed for clarity. 
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    Experimental design
1.   Sample size

Describe how sample size was determined. computational analyses used all 97 breast tumor samples that have 
matched normal breast samples in the database. 

2.   Data exclusions

Describe any data exclusions. no data were excluded

3.   Replication

Describe whether the experimental findings were reliably reproduced. all attempts at replication were successful

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

We used all 97 breast tumor samples that have matched normal breast 
samples in the database. Since there's no sampling, there's no 
randomization.

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

There was no group allocation, because we used all 97 samples of normal 
and tumor conditions. Since there's no group allocation (or sampling), 
blinding is not relevant.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. All statistical computations were performed in python scipy stats package 
(version 0.15.1) or R (version 3.1.1). Gene differential expression analysis 
was done by edgeR (version 3.8.6). 

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

No restrictions on availability of unique materials.

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

All the antibodies used are commercial available and validated indicated in 
company website and their references.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. HeLa and MCF7 cell lines are purchased from ATCC.

b.  Describe the method of cell line authentication used. The cell lines are authenticated by the provider and store in our lab with 
low passage.

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

They were tested and showed mycoplasma free.

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

None of the cell lines is listed in the database of commonly misidentified 
cell lines maintained by ICLAC.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

no animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

the study did not involve human research participants.


	3′ UTR shortening represses tumor-suppressor genes in trans by disrupting ceRNA crosstalk

	Methods

	Acknowledgements

	Fig. 1 3′US genes are not strongly associated with oncogenes.
	Fig. 2 3′UTR shortening contributes to ceRNET disruption.
	Fig. 3 3′UTR shortening represses tumor-suppressor genes in TCGA breast cancer.
	Fig. 4 NUDT21-mediated 3′ UTR shortening causes tumor-suppressor repression in trans.
	Fig. 5 NUDT21-mediated 3′​UTR shortening represses the tumor-suppressor genes PHF6 and LARP1.




